Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Eur J Med Res ; 29(1): 248, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649940

ABSTRACT

BACKGROUND: Non-invasive respiratory support (conventional oxygen therapy [COT], non-invasive ventilation [NIV], high-flow nasal oxygen [HFNO], and NIV alternated with HFNO [NIV + HFNO] may reduce the need for invasive mechanical ventilation (IMV) in patients with COVID-19. The outcome of patients treated non-invasively depends on clinical severity at admission. We assessed the need for IMV according to NIV, HFNO, and NIV + HFNO in patients with COVID-19 according to disease severity and evaluated in-hospital survival rates and hospital and intensive care unit (ICU) lengths of stay. METHODS: This cohort study was conducted using data collected between March 2020 and July 2021. Patients ≥ 18 years admitted to the ICU with a diagnosis of COVID-19 were included. Patients hospitalized for < 3 days, receiving therapy (COT, NIV, HFNO, or NIV + HFNO) for < 48 h, pregnant, and with no primary outcome data were excluded. The COT group was used as reference for multivariate Cox regression model adjustment. RESULTS: Of 1371 patients screened, 958 were eligible: 692 (72.2%) on COT, 92 (9.6%) on NIV, 31 (3.2%) on HFNO, and 143 (14.9%) on NIV + HFNO. The results for the patients in each group were as follows: median age (interquartile range): NIV (64 [49-79] years), HFNO (62 [55-70] years), NIV + HFNO (62 [48-72] years) (p = 0.615); heart failure: NIV (54.5%), HFNO (36.3%), NIV + HFNO (9%) (p = 0.003); diabetes mellitus: HFNO (17.6%), NIV + HFNO (44.7%) (p = 0.048). > 50% lung damage on chest computed tomography (CT): NIV (13.3%), HFNO (15%), NIV + HFNO (71.6%) (p = 0.038); SpO2/FiO2: NIV (271 [118-365] mmHg), HFNO (317 [254-420] mmHg), NIV + HFNO (229 [102-317] mmHg) (p = 0.001); rate of IMV: NIV (26.1%, p = 0.002), HFNO (22.6%, p = 0.023), NIV + HFNO (46.8%); survival rate: HFNO (83.9%), NIV + HFNO (63.6%) (p = 0.027); ICU length of stay: NIV (8.5 [5-14] days), NIV + HFNO (15 [10-25] days (p < 0.001); hospital length of stay: NIV (13 [10-21] days), NIV + HFNO (20 [15-30] days) (p < 0.001). After adjusting for comorbidities, chest CT score and SpO2/FiO2, the risk of IMV in patients on NIV + HFNO remained high (hazard ratio, 1.88; 95% confidence interval, 1.17-3.04). CONCLUSIONS: In patients with COVID-19, NIV alternating with HFNO was associated with a higher rate of IMV independent of the presence of comorbidities, chest CT score and SpO2/FiO2. Trial registration ClinicalTrials.gov identifier: NCT05579080.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Humans , Noninvasive Ventilation/methods , Female , Male , COVID-19/therapy , COVID-19/complications , Oxygen Inhalation Therapy/methods , Middle Aged , Retrospective Studies , Aged , Length of Stay , Intensive Care Units , SARS-CoV-2 , Hospital Mortality
2.
Front Physiol ; 15: 1383167, 2024.
Article in English | MEDLINE | ID: mdl-38645690

ABSTRACT

Introduction: During pneumoperitoneum (PNP), airway driving pressure (ΔPRS) increases due to the stiffness of the chest wall and cephalic shift of the diaphragm, which favors atelectasis. In addition, depending on the mechanical power (MP) formulas, they may lead to different interpretations. Methods: Patients >18 years of age with body mass index >35 kg/m2 were included in a single-center randomized controlled trial during their admission for bariatric surgery by abdominal laparoscopy. Intra-abdominal pressure was set at 15 mmHg at the pneumoperitoneum time point (PNP). After the recruitment maneuver, the lowest respiratory system elastance (ERS) was detected during the positive end-expiratory pressure (PEEP) step-wise decrement. Patients were randomized to the 1) CTRL group: ventilated with PEEP of 5 cmH2O and 2) PEEPIND group: ventilated with PEEP value associated with ERS that is 5% higher than its lowest level. Respiratory system mechanics and mean arterial pressure (MAP) were assessed at the PNP, 5 min after randomization (T1), and at the end of the ventilation protocol (T2); arterial blood gas was assessed at PNP and T2. ΔPRS was the primary outcome. Three MP formulas were used: MPA, which computes static PEEP × volume, elastic, and resistive components; MPB, which computes only the elastic component; and MPC, which computes static PEEP × volume, elastic, and resistive components without inspiratory holds. Results: Twenty-eight patients were assessed for eligibility: eight were not included and 20 patients were randomized and allocated to CTRL and PEEPIND groups (n = 10/group). The PEEPIND ventilator strategy reduced ΔPRS when compared with the CTRL group (PEEPIND, 13 ± 2 cmH2O; CTRL, 22 ± 4 cmH2O; p < 0.001). Oxygenation improved in the PEEPIND group when compared with the CTRL group (p = 0.029), whereas MAP was comparable between the PEEPIND and CTRL groups. At the end of surgery, MPA and MPB were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). At the end of the surgery, MPA and MPC were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). Conclusion: Individualized PEEP was associated with a reduction in ΔPRS and an improvement in oxygenation with comparable MAP. The MP, which solely computes the elastic component, better reflected the improvement in ΔPRS observed in the individualized PEEP group. Clinical Trial Registration: The protocol was registered at the Brazilian Registry of Clinical Trials (U1111-1220-7296).

3.
J Clin Med ; 13(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398494

ABSTRACT

The use of neuromuscular blocking agents (NMBAs) is common in the intensive care unit (ICU). NMBAs have been used in critically ill patients with lung diseases to optimize mechanical ventilation, prevent spontaneous respiratory efforts, reduce the work of breathing and oxygen consumption, and avoid patient-ventilator asynchrony. In patients with acute respiratory distress syndrome (ARDS), NMBAs reduce the risk of barotrauma and improve oxygenation. Nevertheless, current guidelines and evidence are contrasting regarding the routine use of NMBAs. In status asthmaticus and acute exacerbation of chronic obstructive pulmonary disease, NMBAs are used in specific conditions to ameliorate patient-ventilator synchronism and oxygenation, although their routine use is controversial. Indeed, the use of NMBAs has decreased over the last decade due to potential adverse effects, such as immobilization, venous thrombosis, patient awareness during paralysis, development of critical illness myopathy, autonomic interactions, ICU-acquired weakness, and residual paralysis after cessation of NMBAs use. The aim of this review is to highlight current knowledge and synthesize the evidence for the effects of NMBAs for critically ill patients with lung diseases, focusing on patient-ventilator asynchrony, ARDS, status asthmaticus, and chronic obstructive pulmonary disease.

4.
Diagnostics (Basel) ; 14(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396437

ABSTRACT

Weaning patients from mechanical ventilation (MV) is a complex process that may result in either success or failure. The use of ultrasound at the bedside to assess organs may help to identify the underlying mechanisms that could lead to weaning failure and enable proactive measures to minimize extubation failure. Moreover, ultrasound could be used to accurately identify pulmonary diseases, which may be responsive to respiratory physiotherapy, as well as monitor the effectiveness of physiotherapists' interventions. This article provides a comprehensive review of the role of ultrasonography during the weaning process in critically ill patients.

5.
Curr Vasc Pharmacol ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115617

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.

6.
Intensive Care Med Exp ; 11(1): 82, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010595

ABSTRACT

Mechanical ventilation is a life-saving therapy in several clinical situations, promoting gas exchange and providing rest to the respiratory muscles. However, mechanical ventilation may cause hemodynamic instability and pulmonary structural damage, which is known as ventilator-induced lung injury (VILI). The four main injury mechanisms associated with VILI are as follows: barotrauma/volutrauma caused by overstretching the lung tissues; atelectrauma, caused by repeated opening and closing of the alveoli resulting in shear stress; and biotrauma, the resulting biological response to tissue damage, which leads to lung and multi-organ failure. This narrative review elucidates the mechanisms underlying the pathogenesis, progression, and resolution of VILI and discusses the strategies that can mitigate VILI. Different static variables (peak, plateau, and driving pressures, positive end-expiratory pressure, and tidal volume) and dynamic variables (respiratory rate, airflow amplitude, and inspiratory time fraction) can contribute to VILI. Moreover, the potential for lung injury depends on tissue vulnerability, mechanical power (energy applied per unit of time), and the duration of that exposure. According to the current evidence based on models of acute respiratory distress syndrome and VILI, the following strategies are proposed to provide lung protection: keep the lungs partially collapsed (SaO2 > 88%), avoid opening and closing of collapsed alveoli, and gently ventilate aerated regions while keeping collapsed and consolidated areas at rest. Additional mechanisms, such as subject-ventilator asynchrony, cumulative power, and intensity, as well as the damaging threshold (stress-strain level at which tidal damage is initiated), are under experimental investigation and may enhance the understanding of VILI.

7.
Expert Opin Investig Drugs ; 32(12): 1143-1155, 2023.
Article in English | MEDLINE | ID: mdl-37996088

ABSTRACT

INTRODUCTION: Treatments for the acute respiratory distress syndrome (ARDS) are mainly supportive, and ventilatory management represents a key approach in these patients. Despite progress in pharmacotherapy, anti-inflammatory strategies for the treatment of ARDS have shown controversial results. Positive outcomes with pharmacologic and nonpharmacologic treatments have been found in two different biological subphenotypes of ARDS, suggesting that, with a personalized medicine approach, pharmacotherapy for ARDS can be effective. AREAS COVERED: This article reviews the literature concerning anti-inflammatory therapies for ARDS, focusing on pharmacological and stem-cell therapies, including extracellular vesicles. EXPERT OPINION: Despite advances, ARDS treatments remain primarily supportive. Ventilatory and fluid management are important strategies in these patients that have demonstrated significant impacts on outcome. Anti-inflammatory drugs have shown some benefits, primarily in preclinical research and in specific clinical scenarios, but no recommendations are available from guidelines to support their use in patients with ARDS, except in particular settings such as different subphenotypes, specific etiologies, or clinical trials. Personalized medicine seems promising insofar as it may identify specific subgroups of patients with ARDS who may benefit from anti-inflammatory treatment. However, additional efforts are needed to move subphenotype characterization from bench to bedside.


Subject(s)
Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Precision Medicine
8.
Expert Rev Med Devices ; 20(11): 905-917, 2023.
Article in English | MEDLINE | ID: mdl-37668146

ABSTRACT

INTRODUCTION: Although there has been extensive research on mechanical ventilation for acute respiratory distress syndrome (ARDS), treatment remains mainly supportive. Recent studies and new ventilatory modes have been proposed to manage patients with ARDS; however, the clinical impact of these strategies remains uncertain and not clearly supported by guidelines. The aim of this narrative review is to provide an overview and update on ventilatory management for patients with ARDS. AREAS COVERED: This article reviews the literature regarding mechanical ventilation in ARDS. A comprehensive overview of the principal settings for the ventilator parameters involved is provided as well as a report on the differences between controlled and assisted ventilation. Additionally, new modes of assisted ventilation are presented and discussed. The evidence concerning rescue strategies, including recruitment maneuvers and extracorporeal membrane oxygenation support, is analyzed. PubMed, EBSCO, and the Cochrane Library were searched up until June 2023, for relevant literature. EXPERT OPINION: Available evidence for mechanical ventilation in cases of ARDS suggests the use of a personalized mechanical ventilation strategy. Although promising, new modes of assisted mechanical ventilation are still under investigation and guidelines do not recommend rescue strategies as the standard of care. Further research on this topic is required.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Ventilators, Mechanical
9.
Life Sci ; 329: 121988, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37517581

ABSTRACT

AIMS: To evaluate BM-MSCs and their extracellular vesicles (EVs) preconditioned with hypoxia or normoxia in experimental pulmonary arterial hypertension (PAH). MAIN METHODS: BM-MSCs were isolated and cultured under normoxia (MSC-N, 21%O2) or hypoxia (MSC-H, 1%O2) for 48 h. EVs were then isolated from MSCs under normoxia (EV-N) or hypoxia (EV-H). PAH was induced in male Wistar rats (n = 35) with monocrotaline (60 mg/kg); control animals (CTRL, n = 7) were treated with saline. On day 14, PAH animals received MSCs or EVs under normoxia or hypoxia, intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time (PAT)/pulmonary ejection time (PET), and right ventricular hypertrophy (RVH) index were evaluated. Perivascular collagen content, vascular wall thickness, and endothelium-mesenchymal transition were analyzed. KEY FINDINGS: PAT/PET was lower in the PAH group (0.26 ± 0.02, P < 0.001) than in CTRLs (0.43 ± 0.02) and only increased in the EV-H group (0.33 ± 0.03, P = 0.014). MSC-N (32 ± 6 mmHg, P = 0.036), MSC-H (31 ± 3 mmHg, P = 0.019), EV-N (27 ± 4 mmHg, P < 0.001), and EV-H (26 ± 5 mmHg, P < 0.001) reduced RVSP compared with the PAH group (39 ± 4 mmHg). RVH was higher in the PAH group than in CTRL and reduced after all therapies. All therapies decreased perivascular collagen fiber content, vascular wall thickness, and the expression of endothelial markers remained unaltered; only MSC-H and EV-H decreased expression of mesenchymal markers in pulmonary arterioles. SIGNIFICANCE: MSCs and EVs, under normoxia or hypoxia, reduced right ventricular hypertrophy, perivascular collagen, and vessel wall thickness. Under hypoxia, MSCs and EVs were more effective at improving endothelial to mesenchymal transition in experimental PAH.


Subject(s)
Extracellular Vesicles , Hypertension, Pulmonary , Mesenchymal Stem Cells , Pulmonary Arterial Hypertension , Rats , Animals , Male , Pulmonary Arterial Hypertension/therapy , Pulmonary Arterial Hypertension/metabolism , Hypertrophy, Right Ventricular , Bone Marrow/metabolism , Cells, Cultured , Rats, Wistar , Familial Primary Pulmonary Hypertension , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Collagen/metabolism , Hypoxia/metabolism
10.
Intensive Care Med Exp ; 11(1): 44, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37474816

ABSTRACT

Patients on mechanical ventilation may receive intravenous fluids via restrictive or liberal fluid management. A clear and objective differentiation between restrictive and liberal fluid management strategies is lacking in the literature. The liberal approach has been described as involving fluid rates ranging from 1.2 to 12 times higher than the restrictive approach. A restrictive fluid management may lead to hypoperfusion and distal organ damage, and a liberal fluid strategy may result in endothelial shear stress and glycocalyx damage, cardiovascular complications, lung edema, and distal organ dysfunction. The association between fluid and mechanical ventilation strategies and how they interact toward ventilator-induced lung injury (VILI) could potentiate the damage. For instance, the combination of a liberal fluids and pressure-support ventilation, but not pressure control ventilation, may lead to further lung damage in experimental models of acute lung injury. Moreover, under liberal fluid management, the application of high positive end-expiratory pressure (PEEP) or an abrupt decrease in PEEP yielded higher endothelial cell damage in the lungs. Nevertheless, the translational aspects of these findings are scarce. The aim of this narrative review is to provide better understanding of the interaction between different fluid and ventilation strategies and how these interactions may affect lung and distal organs. The weaning phase of mechanical ventilation and the deresuscitation phase are not explored in this review.

11.
Front Med (Lausanne) ; 10: 1194773, 2023.
Article in English | MEDLINE | ID: mdl-37332761

ABSTRACT

Coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus and may lead to severe respiratory failure and the need for mechanical ventilation (MV). At hospital admission, patients can present with severe hypoxemia and dyspnea requiring increasingly aggressive MV strategies according to the clinical severity: noninvasive respiratory support (NRS), MV, and the use of rescue strategies such as extracorporeal membrane oxygenation (ECMO). Among NRS strategies, new tools have been adopted for critically ill patients, with advantages and disadvantages that need to be further elucidated. Advances in the field of lung imaging have allowed better understanding of the disease, not only the pathophysiology of COVID-19 but also the consequences of ventilatory strategies. In cases of refractory hypoxemia, the use of ECMO has been advocated and knowledge on handling and how to personalize strategies have increased during the pandemic. The aims of the present review are to: (1) discuss the evidence on different devices and strategies under NRS; (2) discuss new and personalized management under MV based on the pathophysiology of COVID-19; and (3) contextualize the use of rescue strategies such as ECMO in critically ill patients with COVID-19.

12.
J Clin Med ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36835919

ABSTRACT

Over the last decade, the management of acute respiratory distress syndrome (ARDS) has made considerable progress both regarding supportive and pharmacologic therapies. Lung protective mechanical ventilation is the cornerstone of ARDS management. Current recommendations on mechanical ventilation in ARDS include the use of low tidal volume (VT) 4-6 mL/kg of predicted body weight, plateau pressure (PPLAT) < 30 cmH2O, and driving pressure (∆P) < 14 cmH2O. Moreover, positive end-expiratory pressure should be individualized. Recently, variables such as mechanical power and transpulmonary pressure seem promising for limiting ventilator-induced lung injury and optimizing ventilator settings. Rescue therapies such as recruitment maneuvers, vasodilators, prone positioning, extracorporeal membrane oxygenation, and extracorporeal carbon dioxide removal have been considered for patients with severe ARDS. Regarding pharmacotherapies, despite more than 50 years of research, no effective treatment has yet been found. However, the identification of ARDS sub-phenotypes has revealed that some pharmacologic therapies that have failed to provide benefits when considering all patients with ARDS can show beneficial effects when these patients were stratified into specific sub-populations; for example, those with hyperinflammation/hypoinflammation. The aim of this narrative review is to provide an overview on current advances in the management of ARDS from mechanical ventilation to pharmacological treatments, including personalized therapy.

13.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36571572

ABSTRACT

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Subject(s)
Biological Products , Lung Injury , Respiratory Distress Syndrome , Rats , Male , Animals , Rats, Wistar , Respiratory Rate , Vascular Cell Adhesion Molecule-1 , Respiratory Distress Syndrome/prevention & control , Continuous Positive Airway Pressure
14.
Intensive Care Med Exp ; 10(1): 53, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36529842

ABSTRACT

BACKGROUND: Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS: In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS: In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.

15.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Article in English | MEDLINE | ID: mdl-36192337

ABSTRACT

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Rats , Male , Proteomics , Carbon Dioxide/metabolism , Rats, Wistar , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Nitrogen/metabolism
16.
Physiol Rep ; 10(17): e15429, 2022 09.
Article in English | MEDLINE | ID: mdl-36065867

ABSTRACT

Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT  = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.


Subject(s)
Acute Lung Injury , Acute Lung Injury/therapy , Animals , Kidney , Lung , Male , Rats , Rats, Wistar , Respiration, Artificial/methods , Tidal Volume
17.
Rev Bras Ter Intensiva ; 34(1): 185-196, 2022.
Article in Portuguese, English | MEDLINE | ID: mdl-35674526

ABSTRACT

Although the PaO 2/FiO 2 derived from arterial blood gas analysis remains the gold standard for the diagnosis of acute respiratory failure, the SpO2/FiO2 has been investigated as a potential substitute. The current narrative review presents the state of the preclinical and clinical literature on the SpO2/FiO2 as a possible substitute for PaO2/FiO2 and for use as a diagnostic and prognostic marker; provides an overview of pulse oximetry and its limitations, and assesses the utility of SpO2/ FiO2 as a surrogate for PaO2/FiO2 in COVID-19 patients. Overall, 49 studies comparing SpO2/FiO2 and PaO2/FiO2 were found according to a minimal search strategy. Most were conducted on neonates, some were conducted on adults with acute respiratory distress syndrome, and a few were conducted in other clinical scenarios (including a very few on COVID-19 patients). There is some evidence that the SpO2/ FiO2 criteria can be a surrogate for PaO2/FiO2 in different clinical scenarios. This is reinforced by the fact that unnecessary invasive procedures should be avoided in patients with acute respiratory failure. It is undeniable that pulse oximeters are becoming increasingly widespread and can provide costless monitoring. Hence, replacing PaO2/FiO2 with SpO2/FiO2may allow resourcelimited facilities to objectively diagnose acute respiratory failure.


Embora a PaO2/FiO2 derivada da gasometria arterial continue sendo o padrão-ouro do diagnóstico de insuficiência respiratória aguda, a SpO2/FiO2 tem sido investigada como potencial substituta. Esta revisão narrativa apresenta o estado da literatura pré-clínica e clínica sobre a SpO2/FiO2 como possível substituta da PaO2/FiO2 e para uso como marcador diagnóstico e prognóstico; ainda, é fornecida uma visão geral da oximetria de pulso e suas limitações, além da avaliação da utilidade da SpO2/ FiO2 como substituta da PaO2/FiO2 em pacientes com COVID-19. Ao todo, foram encontrados 49 estudos comparando SpO2/FiO2 e PaO2/ FiO2 com base em uma estratégia de pesquisa mínima. A maioria dos estudos foi realizada em recémnascidos, alguns foram realizados em adultos com síndrome do desconforto respiratório agudo, e outros foram realizados em outros cenários clínicos (incluindo poucos em pacientes com COVID-19). Há certa evidência de que os critérios de SpO2/FiO2 podem substituir a PaO2/FiO2 em diferentes cenários clínicos. Isso é reforçado pelo fato de que devem ser evitados procedimentos invasivos desnecessários em pacientes com insuficiência respiratória aguda. É inegável que os oxímetros de pulso estão cada vez mais difundidos e podem proporcionar um monitoramento sem custos. Portanto, substituir a PaO2/FiO2 pela SpO2/FiO2 pode permitir que instalações com recursos limitados diagnostiquem a insuficiência respiratória aguda de maneira objetiva.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , COVID-19/diagnosis , Humans , Infant, Newborn , Oxygen , Oxygen Saturation , Prospective Studies , Respiratory Distress Syndrome/diagnosis , Severity of Illness Index
18.
Semin Respir Crit Care Med ; 43(3): 321-334, 2022 06.
Article in English | MEDLINE | ID: mdl-35439832

ABSTRACT

Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. First, hemodynamic changes can affect cardiovascular performance, cerebral perfusion pressure (CPP), and drainage of renal veins. Second, the negative effect of mechanical ventilation (compression stress) on the alveolar-capillary membrane and extracellular matrix may cause local and systemic inflammation, promoting lung and peripheral-organ injury. Third, intra-abdominal hypertension may further impair lung and peripheral-organ function during controlled and assisted ventilation. Mechanical ventilation should be optimized and personalized in each patient according to individual clinical needs. Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.


Subject(s)
Respiration, Artificial , Ventilator-Induced Lung Injury , Humans , Lung , Positive-Pressure Respiration/adverse effects , Respiration, Artificial/adverse effects , Tidal Volume/physiology , Ventilator-Induced Lung Injury/etiology , Ventilator-Induced Lung Injury/prevention & control
19.
Expert Rev Respir Med ; 16(4): 437-446, 2022 04.
Article in English | MEDLINE | ID: mdl-35341424

ABSTRACT

INTRODUCTION: Typical acute respiratory distress syndrome (ARDS) and severe coronavirus-19 (COVID-19) pneumonia share complex pathophysiology, a high mortality rate, and an unmet need for efficient therapeutics. AREAS COVERED: This review discusses the current advances in understanding the pathophysiologic mechanisms underlying typical ARDS and severe COVID-19 pneumonia, highlighting specific aspects of COVID-19-related acute hypoxemic respiratory failure that require attention. Two models have been proposed to describe the mechanisms of respiratory failure associated with typical ARDS and severe COVID-19 pneumonia. EXPERT OPINION: ARDS is defined as a syndrome rather than a distinct pathologic entity. There is great heterogeneity regarding the pathophysiologic, clinical, radiologic, and biological phenotypes in patients with ARDS, challenging clinicians, and scientists to discover new therapies. COVID-19 has been described as a cause of pulmonary ARDS and has reopened many questions regarding the pathophysiology of ARDS itself. COVID-19 lung injury involves direct viral epithelial cell damage and thrombotic and inflammatory reactions. There are some differences between ARDS and COVID-19 lung injury in aspects of aeration distribution, perfusion, and pulmonary vascular responses.


Subject(s)
COVID-19 , Lung Injury , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , Humans , Lung/pathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
20.
Rev. bras. ter. intensiva ; 34(1): 185-196, jan.-mar. 2022. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1388040

ABSTRACT

RESUMO Embora a PaO2/FiO2 derivada da gasometria arterial continue sendo o padrão-ouro do diagnóstico de insuficiência respiratória aguda, a SpO2/FiO2 tem sido investigada como potencial substituta. Esta revisão narrativa apresenta o estado da literatura pré-clínica e clínica sobre a SpO2/FiO2 como possível substituta da PaO2/FiO2 e para uso como marcador diagnóstico e prognóstico; ainda, é fornecida uma visão geral da oximetria de pulso e suas limitações, além da avaliação da utilidade da SpO2/ FiO2 como substituta da PaO2/FiO2 em pacientes com COVID-19. Ao todo, foram encontrados 49 estudos comparando SpO2/FiO2 e PaO2/ FiO2 com base em uma estratégia de pesquisa mínima. A maioria dos estudos foi realizada em recémnascidos, alguns foram realizados em adultos com síndrome do desconforto respiratório agudo, e outros foram realizados em outros cenários clínicos (incluindo poucos em pacientes com COVID-19). Há certa evidência de que os critérios de SpO2/FiO2 podem substituir a PaO2/FiO2 em diferentes cenários clínicos. Isso é reforçado pelo fato de que devem ser evitados procedimentos invasivos desnecessários em pacientes com insuficiência respiratória aguda. É inegável que os oxímetros de pulso estão cada vez mais difundidos e podem proporcionar um monitoramento sem custos. Portanto, substituir a PaO2/FiO2 pela SpO2/FiO2 pode permitir que instalações com recursos limitados diagnostiquem a insuficiência respiratória aguda de maneira objetiva.


ABSTRACT Although the PaO 2/FiO 2 derived from arterial blood gas analysis remains the gold standard for the diagnosis of acute respiratory failure, the SpO2/FiO2 has been investigated as a potential substitute. The current narrative review presents the state of the preclinical and clinical literature on the SpO2/FiO2 as a possible substitute for PaO2/FiO2 and for use as a diagnostic and prognostic marker; provides an overview of pulse oximetry and its limitations, and assesses the utility of SpO2/ FiO2 as a surrogate for PaO2/FiO2 in COVID-19 patients. Overall, 49 studies comparing SpO2/FiO2 and PaO2/FiO2 were found according to a minimal search strategy. Most were conducted on neonates, some were conducted on adults with acute respiratory distress syndrome, and a few were conducted in other clinical scenarios (including a very few on COVID-19 patients). There is some evidence that the SpO2/ FiO2 criteria can be a surrogate for PaO2/FiO2 in different clinical scenarios. This is reinforced by the fact that unnecessary invasive procedures should be avoided in patients with acute respiratory failure. It is undeniable that pulse oximeters are becoming increasingly widespread and can provide costless monitoring. Hence, replacing PaO2/FiO2 with SpO2/FiO2may allow resourcelimited facilities to objectively diagnose acute respiratory failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...